

Quality Values for Face Recognition March 9th, 2006

Dr. Michael Brauckmann Dr. Martin Werner

Outline

ViiSAGE

- Assessment of Approaches to Quality Scores
- Approach to Quality Scoring
- Experimental Results
- Conclusion

Traditional Approaches to Quality Scores

- traditional approach for quality assessment of images is strongly driven by photographic history:
 - Brightness
 - Contrast
 -
- using digital media leads to a second set of requirements
 - Image resolution
 - Compression (ratio, PSNR)
 - ·
- adding context, i.e. talking about Facial Images,
 - Size of face
 - Contrast of face
 - Resolution of face
 -
- prominent example

ICAO requirements, i.e. requirements of ISO/IEC 19794-5 and ANSI-385

Relation to Standards

 Working draft of ISO/IEC 29794-1 defines different levels of processing

- Source -> character
- Image based sample -> fidelity
- Processed sample -> fidelity
- Feature-based -> fidelity
- For details refer to David Benini's talk on "Biometric Quality Standards"

Comparison Face / Finger

- For modality "Finger" use of information of all levels is state of the art
 - Most quality measurements are minutiae based
 - How do Spectral based approaches fit in this scheme?
- For modality "Face" there is no agreement on a common definition of features
 - PCA/ICA
 - Wavelets
 - Local Features
 - Filter Responses of any kind of filters
- Face Quality approaches tend to avoid feature based quality values

Feature Based Quality Scores

Features are designed for

Data compression

- compression that preserves discriminative power
- has potential to serve as a foundation for a well defined quality score (+)

Intra class generalization

- images of the same individual should lead to similar features despite different image properties (eliminates irrelevance)
- has potential to serve as a foundation for a well defined quality score (+)

Cross class discrimination

- images of different individuals should lead to dissimilar features despite similar image properties
- risky for a quality score, since quality score should be independent from the individual (-)

Assessment of Traditional Approaches

- Up to date Face Recognition Technologies up to a large extent compensate for photographic effects
 - -> extreme non linear relationship between score and photographic quality scores
- Quality should be related to prediction of matching accuracy than photographic characteristics of an image (except for manual interaction)
 - -> matching is a function of two images resulting in a score, that is related to probabilities

Analyzing Quality Score Candidates

- Analyze correlation of single quality scores on matching score
- Analyze accuracy of score prediction based on multiple quality scores

Experimental Results Sharpness

Experimental Results Contrast on Face

Experimental Results Pose

Experimental Results Feature Based Quality Score

Experimental Results

Neural Net Prediction Of Genuine Scores Based On Pose Estimate, Blur, Face Classifier Output

Conclusions

- Low quality typically is a consequence of multiple limitations
- Up to date FR systems are trained to be invariant to changes
 - making analysis of simple quality measures difficult
- Estimation of performance based on combing photographic and feature level scores seems to be promising approach

Thank you for your attention www.viisage.com